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The Program Manager is Dr.  Rolf Buchdahl (phone 314-694-4721), 

The contract is funded for $5,000,000 and expires 30 April 
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ABSTRACT 

The stiffness and strength of tape-reinforced composites 

have been calculated by using the finite-element method, simple 

model theory and the von Mises-Hencky criterion. The tapes 

are assumed to be oriented uniaxially in both the longitudinal 

and transverse directions. According to the theoretical cal- 

culations, substantial increases in two basic moduli and a 

transverse strength are possible with the tape systems, as 

compared with the corresponding fiber systems. The calcula- 

tions are based mainly on glass-epoxy composites. 

~i 



INTRODUCTION 

A great deal of literature [1-7] has been published con- 

cerning the mechanical properties of fiber and particulate- 

reinforced composites, but relatively scanty information is 

available on such properties for the tape-reinforced composites 

which are characterized by the class of reinforcements with 

parallel faces.  In order to establish the practical potential- 

ities of the tape composites, theoretical studies have been 

made on the stiffness and strength of such systems. The tapes 

are assumed to be uniaxially aligned both in the longitudinal 

and transverse directions, and ideally packed into staggered 

configuration in cross section as shown in Figure 1. 

The longitudinal modulus and strength of the tape 

composites are essentially the same as those of the correspond- 

ing fiber composites.  The other five basic elastic moduli and 

the two transverse strengths have been calculated for the tape 

composites and compared with those for the corresponding fiber 

composites.  The fibers in the reference composite systems are 

assumed to be circular in cross section, uniaxially aligned, 

and packed into hexagonal arrays. Two limiting conditions 

have been considered in the strength calculations.  For the 

first condition the reinforcing fhase is assumed to be perfectly 

bonded to the matrix, while for the second condition it is 

assumed to be totally debonded from the matrix, thus providing 

the upper and lower bounds. 
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The calculations are based mainly on the glass-epoxy 

systems because of the commercial availability of the glass 

tapes.  However, some calculations have been made also on 

boron-epoxy systems for comparison's sake. 

i 
0 

[ 
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THEORY 

Elastic Moduli 

uniaxially oriented tape composites are anisotrop!c and 

require six elastic moduli to describe their stiffness char- 

acteristics.  These elastic moduli are illustrated in Figure 2 

in which EL, ET and E^ are Young's moduli, while GLT/ GL^» 

and G^j,  are shear moduli.  The subscripts L and T refer to 

the longitudinal and transverse directions respectively. 

The finite-element method [8-10] is utilized to calculate 

the stresses and displacements in the composite, which in turn 

are used to evaluate the elastic moduli from their basic 

definitions.  Based on this method, an elastic system is first 

divided into a number of discrete elements joined together at 

the nodes. The basic equations of elasticity can be written 

for each of the elements within the system, which relate the 

forces acting on the nodes to the displacements of the nodes. 

These equations can  then be correlated through a set of rela- 

tions representing the simple fact that the elements must fit 

together, which is usually referred to in elasticity theory 

as the compatibility condition. 

A typical region as shown in Figure 3 can  be used to 

calculate the transverse moduli of the tape composites.  To 

calculate the transverse modulus E  (parallel to the widths 

of the tapes) for the tape composites, the finite-element 
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method is first applied to the typical region and the procedure 

given in the Appendix is used to calculate the distributions of 

stress and displacement, in the region. Corresponding to the 

superimposed case as given in the Appendix, the applied normal 

stress (parallel to the widths of the tapes) can be calculated 

from the stress distribution thus determined. The modulus is 

obtained by a simple application of the Hooke's law.  The 

transverse modulus E   (perpendicular to the widths of the 

tapes) of the tape composites can be calculated in a similar 

manner except that the normal load is now applied in the y- 

direction, and the boundary conditions for Cases 1 and 2 as 

well as the equation tor superposition in Case 3 as given in 

the Appendix are changed accordingly. 

The transverse modulus ET or ETT of the fiber composites 

are calculated based on the formulas given in References 1 

and 11. 

The transverse shear modulus GTT (parallel and perpendicu- 

lar to the widths of the tap33) of the tape composites can be 

calculated by considering the same typical region as mentioned 

previously, except using the boundary conditions corresponding 

to those of the pure shear and governed by compatibility of 

the composite domain.  The longitudinal-transverse shear modu- 

li GLT ( with the longitudinal axis parallel to the lengths 

of the tapes, and the transverse axis parallel to their widths) 

and GLT« ( with the longitudinal axis parallel to the lengths 

of the tapes, and the transverse axis perpendicular to their 

widths) of the tape composites are calculated under the same 
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boundary conditions as those used for G  , but with different 

typical regions taken in the longitudinal direction.  The 

iTtodu.li G,-.,, G  and GLT i are calculated from the basic defi- 

nition of the shear modulus. 

In the limiting case where the width w of the tape is 

much greater than its thickness t (i.e,, w/t ■♦■ «) , then the 

elastic moduli can be calculated from equations derived from 

the simple models consisting of laminated structures.  Figure 

3 illustrates the models used in this limiting case.  For the 

moduli E , E_ and G  , both phases experience the same defor- 

mation, so that the moduli are directly proportional to the 

constituent moduli and the relative proportion of each phase. 

For the moduli £__« GL ' and GTT, the less stiff matrix phase 

undergoes more deformation than the more rigid tapes; compli- 

ances, i.e., reciprocal moduli, are additive in this case. 

The equations, which yield either upp^r or lower bounds, for 

the moduli are as follows: 

ET  « Em « E V  + E-VÄ L    T   mm   f f (1) 

1 
ETT 

= S* Vf 
Ef 

GLT ■ G V m m + GfVf 

1 
GLT' 

= 
Gm Gf 

(2) 

(3) 

(4) 

where V and V* are the volume fractions of the matrix and 
m     £ 

tape phases respectively. 

t-^ 
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As for fiber composites, the transverse shear moduli G 
TT 

and ^T* are calculated from the formula given in Reference 1, 

and the longitudinal-transverse shear modulus G  from the 
LT 

formula derived in Reference 5, 

Transverse Strengths 

Various theories [12-15] have been proposed for predict- 

ing the strength of materials.  However, the theory introduced 

by von Mises [16] and reinterpreted by Hencky [17] is generally 

recognized as conceptually most consistent, and it is also 

supported by experimental evidences. 

The total strain energy stored in an elastic body can 

be divided into two parts, the dilatationa3 energy and the 

distortional energy, with the former being the energy used in 

changing the volume and the latter being the energy used in 

changing the shape [12,13],  The von Mises-Hencky theory 

postulates that yielding sets in when the distortional energy 

reaches a critical value.  For a uniaxial and plane state of 

stress the criterion becomes 

ai2 - aia2 + a2   " Snf (5) 

where al  and  a2 are the principal stresses, and S is the 

strength of the matrix material.  The quantity on the left 

side of equation (5) will be referred to as the normalized 

distortional energy hereafter. 

The von Mises-Hencky criterion has been used to calcu- 

late the transverse strengths of tape composites.  Based on 
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the Jtress distributions obtained previously for E«, the 

normalized distortional energy is evaluated for every element 

in the domain, thus determining also the maximum normalized 

distortional energy. The transverse strength S« (parallel 

to the widths of the tapes) of the tape composites can then 

be calculated from the following equation: 

ST ' Sm ^x / (ümax> I/2 («) 

where ax is the applied normal stress in the x-direction(see 

Figure 4) under the assumed displacement conditions as described 

in the Appendix, and Vmax  is the corresponding maximum normal- 

ized distortional energy.  Both ö^ and ümax are functions of 

the filler volume content, condition of bonding, as well as 

the constituent properties.  Further, by using the stress dis- 

tributions calculated before for ETT, the transverse composite 

strength S,^ (perpendicular to the widths of the tapes) for 

the tape composites can be calculated in a similar manner from 

the following equation: 

S  «■ s a / (u  ) /2 m TT   my' v max' I'J 

where a is the applied normal stress in the y-direction under 

the assumed displacement conditions for E  , and U*  is the 
1.1. inax 

corresponding maximum normalized distortional energy. 

The transverse strengths of the fiber composites are cal- 

culated based on the method proposed in Reference 18. More- 

over, ^oth the tape and fiber composite strengths have been 

calculated for the conditions of perfect bonding and total 
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debording. For thft condition of perfect bonding the fillers 

are assumed to be in perfect contact with the matrix, and the 

composite is considered continuous, from the mechanistic point 

of view, at the interface between the constituents. For the 

condition of total debonding the fillers are assumed to be 

completely separated from the matrix. 

f 

• 
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RESULTS AND DISCUSSION 

The theoretical approaches as described above were 

used to calculate the mechanical properties of tape composites 

as functions of filler volume content V-, and  compared to 

those for fiber composites. Variations of the moduli ET, ETT, 

G _, ^T' an^ GTT versu8 filler volume content Vf are shewn in 

Figures 5, 6, 7, 9 and  10 respectively for glass-epoxy tape 

and fiber composites. Figure 8 shows the variations of GT_ 

versus Vf for boron-epoxy tape and fiber composites.  The 

normalized moduli ET/Em and GLT / G^ are shown in Figures 11 

through 14 as functions of the tape width to thickness ratio 

w/t and filler volume content Vf for glass-epoicy and boron- 

epoxy tape composites.  The transverse strengths ST and S—- 

are shown in Figures 15 through 18 as functions of filler 

volume content for glass-epoxy tape and fiber composites, and 

for different bonding conditions.  Except for Figures 11 

through 14, the tapes are assumed to be 0.125 in. x 0.003 in. 

in cross section. 

As can be observed from their respective figures, it is 

possible for the tape composites to achieve substantial 

increases in the transverse modulus E , shear modulus GLT and 

transverse strength ST, as compared to the corresponding fiber 

composites.  For glass-epoxy systems, the maximum increases 

are as follows:  250% in ET, 340% in G T and  ST.  If boron 

tapes with the same w/t ratio were used, the increases would 
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hav, been even higher, for in.tance, a maximum increase of 

1,950% is GLT is possible with such tape systems. Moreover, 

from the geometric point of view, it is possible for the 

filler volume content in the tape system to reach 100% while 

90.6% is the upper limit for the fiber system, thus further 

enhancing the above-mentioned properties. However, it should 

also be pointed out that accompanying such increases there 

are slight decreases in the other three moduli, E^, GLT. and 

G^. Onder the condition of total debonding the transverse 

strength sT of the tape composite is slightly higher, as 

compared with the corresponding fiber composite. For the 

case of perfect bonding the transverse strength STT of the 

tape composite equals the matrix strength, which is also 

slightly higher than the S^ of the corresponding fiber 

composite, m addition, under the condition of total debond- 

ing, the transverse composite strength S^ drops sharply to 

zero as soon as some tapes are embedded intc the matrix. Thus 

the significance of bonding can not be overemphasized. 

It is interesting to see from Figures 11 through 14 that 

insofar as ET and GLT are concerned, the asymptotic values 

(corresponding to large w/t values) ere practically reached 

when w/t »100. 

Perhape, it should also be emphasized that the basis of 

strength of the tape composite lies in the staggered packing 

arrangement as shown in Figure 1, which provides an efficient 

shear transfer mechanism [19]. 
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NOMENCLATURE 

^ 

E^ 

E, 

Bfptp 

G. 

'LT 

GLr' 

Bulk modulus of the matrix material. 

Young's modulus of the filler material. 

Young's modulus of the matrix material 

Longitudinal composite modulus (parallel to 

the lengths of the tapes or fibers). 

Transverse composite modulus (parallel to 

the widths of the tapes in the case of tape 

composites). 

Transverse composite modulus (perpendicular 

to the widths of the tapes in the case of 

tape composites). 

Shear modulus of the filler material. 

Shear modulus of the matrix material. 

Longitudinal-transverse composite shear 

modulus (with the longitudinal axis parallel 

to the lengths of the tapes, and the trans- 

verse axis parallel to their widths, in the 

case of tape composites). 

Longitudinal-transverse composite shear 

modulus /with the longitudinal axis parallel 

to the lengths of the tapes, and the trans- 

verse axis perpendicular to their widths, in 

the case of tape composites). 
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TT 

Sm 

ST 

s 
TT 

max'  max 

m 

x, y 

ur v 

u. f v. 

U2' V2 

ai' ai 

axi    ayi 

Transverse composite shear modulus (parallel 

and perpendicular to the widths of the tapes 

in the case of tape composites). 

Strength of the matrix material. 

Transverse composite strength (parallel.to 

the widths of the tapes in the case of tape 

composites). 

Transverse composite strength (perpendicular 

to the widths of the tapes in the case of 

tape composites). 

Poisson's ratio of the filler material. 

Poisson's ratio of the matrix material. 

Maximum normalized distortion a energies for 

applied normal stressses in x and y-directions 

(see Appendix). 

Filler volume content. 

Matrix volume content. 

Rectangular coordinates. 

Displacements in x and y-directions. 

Displacements in x and y-directions for Case 1 

in the Appendix. 

Displacements in x and y-directions for Case 2 

in the Appendix. 

Principal stresses. 

Average normal stresses in x and y-directions 

for Case 1 in the Appendix. 
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o     ,   a 

ax'  ay 

xy 

a, b 

w# t 

F,E.M, 

S.M.T. 

- Average normal stresses in x and y-directions 

for Case 2 in the Appendix. 

- Average normal stresses in x and y-directions 

for Case 3 in the Appendix. 

- Shearing stress in xy-plane parallel to x or 

y-axis. 

- Width and length of the typical region. 

- Width and thickness of the tape. 

- Results obtained by using the finite-element 

method (for w/t - 41.7). 

« Results obtained by using the simple model 

theory (for w/t <■ «) . 
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APPENDIX 

The determination of the stress and displacement distri- 

butions in a transverse composite domain as shown in Figure 1 

can be accomplished by analyzing a typical region, as shown 

in Figure 4. The procedure used here is basically similar to 

that described in Reference 20.  In conjunction with the 

evaluation of ET and ST, the finite-element technique and the 

method of superposition a^e used to solve the problem in the 

following steps, assuming that the applied normal stress is 

in the x-direction: 

1.  Solve Case 1 which is defined by the following bound- 

ary conditions: 

0 along the entire boundary, 

0 along AO (points remain on the y-axis because 

of symmetry), 

1 along BC (arbitrarily specified unit displace- 

ment) , 

v  «0 along OC (points remain on the x-axis because 

of symmetry), 

v  «0 along AB (specified displacement condition). 

The displacement field thus calculated is (u^vj, and 

the average normal stresses in the x and y-directions are a 

and a  respectively. 

xy 

u 

1 ■**' 
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2. Solve Case 2 which is defined by the following bound- 

ary conditions: 

T - 0 along the entire boundary, 

u - 0 along AO, 

u . - 0 along BC, 

v ■ 0 along OC, 

v «1 along AB. 

The displacement field thus calculated is (u,.v.) and 
2 '    2 

the average normal stresses in the x and y-directions are ö" 
X2 

and o  respectively. 

3. Solve Case 3 which is characterized by a «0, solu- 

tion of Case 2 is multiplied by (-ä / ä ) and  summed with 
yi  ya 

that of Case 1. Thus the corresponding applied normal stress 

on the composite is 

-   -    ^yi _ 
ax - Gxi " — 0X2   . <8) 

a 
y2 

Likewise for the stress and displacement components. 
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